THE CHINESE UNIVERSITY OF HONG KONG

MATH2230 Tutorial 9

(Prepared by Tai Ho Man)

0.1 Differentiation and Integration of Larrent Series

Theorem 1. Suppose that f is analytic in an annulus $A = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. For any compact subset K of A, the Larrent series of f converges to f uniformly and absolutely for all $z \in K$.

Theorem 2. Suppose that f is analytic in an annulus $A = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. For any $a \in A$, we can differentiate the Larrent series of f term by term. That is,

$$
f'(a) = \sum_{n=1}^{\infty} na_n (a - z_0)^{n-1} - \sum_{n=1}^{\infty} \frac{nb_n}{(a - z_0)^{n+1}}
$$

Theorem 3. Suppose that f is analytic in an annulus $A = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. For any contour C inside A , we can integrate the Larrent series of f term by term. That is,

$$
\int_C f(z)dz = \sum_{n=0}^{\infty} a_n \int_C (z - z_0)^n dz + \sum_{n=1}^{\infty} b_n \int_C \frac{1}{(z - z_0)^n} dz
$$

Remark : Theorem 2 and 3 are a immediate consequence of theorem 1.

Be careful that the contour in the above theorem may not be closed! If the contour is closed and contains z_0 , we see that all the term are zero except the term $b_1 \int_C$ 1 $\frac{1}{(z-z_0)}dz$, it is because the terms $(z-z_0)^n$ have antiderivative in A except $\frac{1}{(z-z_0)}$ $(n=-1)$. This leads to an important theorem. Before that, we introduce some definitions.

0.2 Three Types of Isolated Singularity

There are three types of isolated singularity. We suppose that f is analytic function in $B_R(a) \setminus \{a\}$. (hence a is isolated singularity)

Definition 1. The point a is called a removable singularity if there is an analytic function \tilde{f} in $B_R(a)$ such that $\tilde{f} = f$ in $B_R(a) \setminus \{a\}$ $(\tilde{f} = f$ except at $z = a$).

Remark : It is the best behaved singularity, it is 'almost' an analytic function. From the definition, the singularity is removed by defining f .

Theorem 4. The point a is a removable singularity iff $\lim_{z \to a} (z - a) f(z) = 0$.

Definition 2. The point a is called a pole if $\lim_{z \to a} |f(z)| = \infty$.

Theorem 5. If f has a pole at $z = a$, then there is a positive integer m and an analytic function g in $B_R(a)$ with $g(a) \neq 0$ such that $f = \frac{g}{(a-1)^2}$ $\frac{g}{(z-a)^m}$. The least integer m is called the order of pole of f $at z = a.$

Definition 3. The point a is called an essential singularity if it is neither removable singularity nor pole.

Remark : In this definition, we can see that $\lim_{z\to a}|f(z)|$ fails to exist, it will converges to different finite value and ∞ according to different path taken.

Theorem 6. (Casorati-Weierstrass theorem) If f has essential singularity at $z = a$, then for every $c \in \mathbb{C}$, there is a sequence z_n converges to a such that $|f(z_n) - c| \to 0$.

Remark : It tells us that given any $c \in \mathbb{C}$, there is z arbitrary close to a such that $f(z)$ arbitrary close to c. In other words, $f(z)$ can take any complex value, with at most one exception value, near $z = a$. (by Great Picard's Theorem)

Remark : The Casorati-Weierstrass theorem can be written as : For any open set U (neighbourhood) around a, the set $f(U \setminus \{a\})$ is dense in \mathbb{C} .

In the view of Larrent series, we have the following conclusion,

Theorem 7. Let $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n + \sum_{n=1}^{m} a_n(z-a)^n$ b_n $\frac{b_n}{(z-a)^n}$ be its Larrent series in $B_R(a) \setminus \{a\}$, then

- $z = a$ is a removable singularity iff $b_n = 0$ for $n \geq 1$,
- $z = a$ is a pole of order m iff $b_m \neq 0$ and $b_n = 0$ for $n \geq m + 1$
- $z = a$ is an essential singularity iff $b_n \neq 0$ for infinitely many integers $n \geq 1$. (not necessary every n!)

Remark : This theorem comes immediately from Theorem 4 and 5.

Definition 4. Let a_i be finite many points in a domain Ω for $i = 1, 2, ..., n$. A function $f(z)$ is called meromorphic function in Ω if a_i are the poles of f $(\lim_{z\to a_i}|f(z)|=\infty)$ and $f(z)$ is analytic in $\Omega \setminus \{a_1, a_2, ..., a_n\}.$

0.3 Exercise:

- 1. Find the power series of e^z about $z = 1$.
- 2. Determine the types of singularities of $f(z) = \frac{\cos z 1}{z}$ z
- 3. Determine the types of singularities of $f(z) = ze^{1/z}$.
- 4. Determine the order of pole of $f(z) = \frac{\cos^3 z}{z}$ z .
- 5. Let Ω be a open bounded domain and $a \in \Omega$. Let f be a analytic function in $\Omega \setminus \{a\}$ such that a is the pole of f. Prove that $g = e^f$ has an essential singularity at a.